657 research outputs found

    The Structure of the [Zn_In - V_P] Defect Complex in Zn Doped InP

    Get PDF
    We study the structure, the formation and binding energies and the transfer levels of the zinc-phosphorus vacancy complex [Zn_In - V_P] in Zn doped p-type InP, as a function of the charge, using plane wave ab initio DFT-LDA calculations in a 64 atom supercell. We find a binding energy of 0.39 eV for the complex, which is neutral in p-type material, the 0/-1 transfer level lying 0.50 eV above the valence band edge, all in agreement with recent positron annihilation experiments. This indicates that, whilst the formation of phosphorus vacancies (V_P) may be involved in carrier compensation in heavily Zn doped material, the formation of Zn-vacancy complexes is not. Regarding the structure: for charge states Q=+6 to -4 the Zn atom is in an sp^2 bonded DX position and electrons added/removed go to/come from the remaining dangling bonds on the triangle of In atoms. This reduces the effective vacancy volume monatonically as electrons are added to the complex, also in agreement with experiment. The reduction occurs through a combination of increased In-In bonding and increased Zn-In electrostatic attraction. In addition, for certain charge states we find complex Jahn-Teller behaviour in which up to three different structures, (with the In triangle dimerised, antidimerised or symmetric) are stable and are close to degenerate. We are able to predict and successfully explain the structural behaviour of this complex using a simple tight binding model.Comment: 10 pages text (postscript) plus 8 figures (jpeg). Submitted to Phys. Rev.

    First-principles study of He in Si

    Get PDF
    We have performed first-principles calculations for He atoms in a Si lattice. From dynamic total-energy minimization we obtain the relaxations of the Si atoms around the impurity and the corresponding total energies. The calculated heat of solution and the diffusion constant of He in Si are in good agreement with experiment. There is a net attraction between two tetrahedral He interstitials, leading to a binding energy of 0.08 eV for He atoms at neighboring interstices. On the other hand, Si vacancies are found not to trap He atoms. The consequences of these results to He-bubble nucleation and growth are discussed.Peer reviewe

    Metastable defect complexes in GaAs

    Get PDF
    We have studied the As-vacancy–Si-impurity and the As-vacancy–As-antisite complexes in GaAs using state-of-the-art electronic structure methods. The complexes show metastability as a function of the position of the impurity or the antisite atom similarly to the large-lattice relaxation models for the isolated DX and EL2 centers. Our findings suggest the enlargement of the family of metastable defects in GaAs, and the results enlighten the metastability mechanisms in the large-lattice relaxation model. In order to discuss the possible experimental detection of this type of metastability, we calculate the positron states and annihilation characteristics for the defect complexes.Peer reviewe

    Shocked POststarbust Galaxy Survey I: Candidate Poststarbust Galaxies with Emission Line Ratios Consistent with Shocks

    Get PDF
    [Abridged] The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the OSSY measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1,067 SPOG candidates (SPOGs*) within z=0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an E+A selection. SPOGs* have a 13% 1.4GHz detection rate from the Faint Images of the Radio Sky at Twenty centimeters survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei. SPOGs* also have stronger NaD absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of SPOGs* further, including their morphologies, active galactic nuclei properties, and environments, has the potential for us to build a more complete picture of the initial conditions that can lead to a galaxy evolving.Comment: 19 pages, 19 figures, 3 tables, accepted to ApJ Supplements (Apr 13), full sample is available on www.spogs.or

    Identification of vacancy defects in compound semiconductors by core-electron annihilation: Application to InP

    Get PDF
    We show that the Doppler broadening of positron annihilation radiation can be used in the identification of vacancy defects in compound semiconductors. Annihilation of trapped positrons with surrounding core electrons reveals chemical information that becomes visible when the experimental backgorund is reduced by the coincidence technique. We also present a simple calculational scheme to predict the high-momentum part of the annihilation line. The utility of the method is demonstrated by providing results for vacancies in InP. In electron irradiated InP the isolated In and P vacancies are distinguished from each other by the magnitude of the core-electron annihilation. In heavily Zn-doped InP we detect a native vacancy defect and identify it to a P vacancy decorated by Zn atoms.Peer reviewe

    Strong Far-IR Cooling Lines, Peculiar CO Kinematics and Possible Star Formation Suppression in Hickson Compact Group 57

    Get PDF
    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for{\dag} Research in Millimeter Astronomy (CARMA) of the Hickson Compact Group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock and/or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to LFIR_{\rm FIR} and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of [C II]/CO and [C II]/FIR ratios, and its far-IR cooling supports a low density warm diffuse gas that falls close to the boundary of acceptable PDR models. However, the power radiated in the [C II] and warm H2_2 emission have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock-heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed diffuse gas. The existence of shocks is also consistent with peculiar CO kinematics in the galaxy, indicating highly non-circular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced SF suppression may explain why a subset of these HCG galaxies have been found previously to fall in the mid-infrared green valley.Comment: ApJ accepted, 16 pages, 12 figures, 3 table

    Welcome to the Twilight Zone: The Mid-Infrared Properties of Poststarburst Galaxies

    Get PDF
    We investigate the optical and Wide-field Survey Explorer (WISE) colors of "E+A" identified post-starburst galaxies, including a deep analysis on 190 post-starbursts detected in the 2{\mu}m All Sky Survey Extended Source Catalog. The post-starburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone (IRTZ). Furthermore, we find that post-starbursts occupy a distinct region [3.4]-[4.6] vs. [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broad-band photometric criteria alone. We have investigated possible causes for the WISE colors of post-starbursts by constructing a composite spectral energy distribution (SED), finding that mid-infrared (4-12{\mu}m) properties of post-starbursts are consistent with either 11.3{\mu}m polycyclic aromatic hydrocarbon emission, or Thermally Pulsating Asymptotic Giant Branch (TP-AGB) and post-AGB stars. The composite SED of extended post- starburst galaxies with 22{\mu}m emission detected with signal to noise >3 requires a hot dust component to produce their observed rising mid-infrared SED between 12 and 22{\mu}m. The composite SED of WISE 22{\mu}m non-detections (S/N<3), created by stacking 22{\mu}m images, is also flat, requiring a hot dust component. The most likely source of this mid-infrared emission of these E+A galaxies is a buried active galactic nucleus. The inferred upper limit to the Eddington ratios of post-starbursts are 1e-2 to 1e-4, with an average of 1e-3. This suggests that AGNs are not radiatively dominant in these systems. This could mean that including selections able to identify active galactic nuclei as part of a search for transitioning and post-starburst galaxies would create a more complete census of the transition pathways taken as a galaxy quenches its star formation.Comment: 13 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Multiwavelength characterisation of an ACT-selected, lensed dusty star-forming galaxy at z=2.64

    Get PDF
    We present \ci\,(2--1) and multi-transition 12^{12}CO observations of a dusty star-forming galaxy, ACT\,J2029+0120, which we spectroscopically confirm to lie at zz\,=\,2.64. We detect CO(3--2), CO(5--4), CO(7--6), CO(8--7), and \ci\,(2--1) at high significance, tentatively detect HCO+^{+}(4--3), and place strong upper limits on the integrated strength of dense gas tracers (HCN(4--3) and CS(7--6)). Multi-transition CO observations and dense gas tracers can provide valuable constraints on the molecular gas content and excitation conditions in high-redshift galaxies. We therefore use this unique data set to construct a CO spectral line energy distribution (SLED) of the source, which is most consistent with that of a ULIRG/Seyfert or QSO host object in the taxonomy of the \textit{Herschel} Comprehensive ULIRG Emission Survey. We employ RADEX models to fit the peak of the CO SLED, inferring a temperature of T\sim117 K and nH2105n_{\text{H}_2}\sim10^5 cm3^{-3}, most consistent with a ULIRG/QSO object and the presence of high density tracers. We also find that the velocity width of the \ci\ line is potentially larger than seen in all CO transitions for this object, and that the LCI(21)/LCO(32)L'_{\rm C\,I(2-1)}/L'_{\rm CO(3-2)} ratio is also larger than seen in other lensed and unlensed submillimeter galaxies and QSO hosts; if confirmed, this anomaly could be an effect of differential lensing of a shocked molecular outflow.Comment: Accepted for publication in Ap

    Theoretical and experimental study of positron annihilation with core electrons in solids

    Get PDF
    A theory for calculating the momentum distribution of annihilating positron-electron pairs in solids is presented. To test the theory, momentum distributions are measured by the Doppler broadening of the annihilation radiation for several bulk metals and semiconductors, as well as for semiconductor alloys and for positrons trapped at vacancies in semiconductors. The theory is based on a two-particle description of the annihilating electron-positron pair. Then, the electron-positron correlation effects, i.e., the enhancement of the electron density at the positron, depend on the electronic state in question. The theory is suited for calculating the high-momentum part of the annihilation spectrum that arises from the core electrons and which can be measured by the Doppler broadening using coincidence techniques. The ideas of the theory are justified by a good agreement between theory and experiment in the case of positron annihilation in undefected bulk lattices. Moreover, the comparison of the theoretical and experimental spectra for alloys and vacancy defects tests the theoretical description for the positron distribution in delocalized and localized states, respectively.Peer reviewe
    corecore